
dm3 documentation
Release 1.0.0RC

Steffen Kux

Apr 04, 2023

SPECIFICATIONS

1 Overview 3
1.1 Abstract . 3
1.2 Motivation . 3
1.3 Base Architecture . 4
1.4 Protocol Extensions . 4

2 Message Transport Protocol (DM3MTP) 5
2.1 Registry . 5

2.1.1 User Profile . 6
2.1.2 Delivery Service Profile . 7

2.2 Message Transport . 7
2.2.1 Workflow . 8
2.2.2 Message Data Structure . 10
2.2.3 Message Metadata Structure . 11
2.2.4 Attachments . 12
2.2.5 Encryption Envelope Data Structure . 13
2.2.6 Envelope Metadata Structure . 13
2.2.7 Delivery Information . 14
2.2.8 Postmark Data Structure . 14

2.3 API Delivery-Service (Incoming Messages) . 15
2.3.1 Submit Message . 15
2.3.2 Get Properties of the Delivery Service . 16
2.3.3 Get the User’s Profile Extension . 17

2.4 Appendix . 18
2.4.1 Delivery Service . 18
2.4.2 Cross Chain Applications . 19
2.4.3 RPC Error Codes . 19

3 Message Storage Protocol (DM3MSP) 21
3.1 Storage . 21
3.2 Data Structure . 21

3.2.1 Architecture . 22

4 References 25

5 Indices and tables 27

i

ii

dm3 documentation, Release 1.0.0RC

Contents:

SPECIFICATIONS 1

dm3 documentation, Release 1.0.0RC

2 SPECIFICATIONS

CHAPTER

ONE

OVERVIEW

1.1 Abstract

The dm3 (Decentralized Messaging for web3 or Direct Message 3) protocol is an end-2-end encrypted peer-2-peer
messaging protocol, rooted in ENS (Ethereum Name Service). It is decentralized, has no single-points-of-failure, has
a lean architecture with minimum resource requirements, and enables interoperability with other messaging solutions
while preserving the self-sovereignty of its users. The dm3 protocol uses ENS as central registry for necessary contact
information (like public keys, addresses of delivery services, . . .), stored in ENS text records, in combination with a
standardized API to build an open ecosystem of message delivery services allowing to send messages from ENS name
to ENS name.

1.2 Motivation

Messaging (such as instant messages, chats, email, etc.) has become an integral part of most people’s lives. Mobile
devices (such as smartphones, tablets, laptops, etc.) with instant access to the Internet make it possible to be in touch
with family, friends, as well as work colleagues, and customers at any time.

While email services are still largely decentralized and interoperable, the lack of appropriate spam protection methods
other than blocking and censoring has resulted in only a few large providers interacting with each other, not to mention
the fact that even today a large portion of email communication is mostly unencrypted.

Messaging services on the web2 (like WhatsApp, Signal, Telegram, . . .) have become closed silos, making cross-
service or cross-app communication almost impossible. Although they mostly offer end-to-end encryption, some ser-
vices may still have backdoors via the central service providers or can stop end-2-end encryption without the user’s
approval.

In the past months, several different approaches and tools have been presented in web3. Methods from the web3
such as key-based identification, encryption, and the availability of blockchain-based registries are being used. Many
applications are built to meet user preferences, and several protocols have been presented. Trade-offs are often necessary
- such as centralized services, application-related registries, or complex protocols. Interoperability across applications,
services, and protocols is still limited, if possible at all.

With dm3, a protocol is presented, which is characterized by a very lean base protocol (DM3MTP - the dm3 message
transfer protocol), which can serve as a bridge between different services and can enable integration and interoperability
with other services and different applications. The aim of dm3 is to suggest a common base standard for web3 messag-
ing, on which further protocols and applications can be built to create a silo-free, secure, self-determined, decentralized
messaging ecosystem - based on web3 technology.

This allows users not only to have full control over their data and messages but also to choose the messaging app
that best suits their needs and preferences, without the compromise of being limited to a particular ecosystem.

3

dm3 documentation, Release 1.0.0RC

1.3 Base Architecture

The dm3 protocol is designed as a lean peer-2-peer messaging protocol with consistent end-to-end encryption and
sufficient decentralization through an open delivery service architecture.

Due to its simple base architecture, dm3 is intended as a base protocol to bring together a variety of messaging appli-
cations and protocols so that true interoperability can be realized.

Required contact information such as public encryption keys and public keys to verify signatures as well as information
on used delivery services are managed as text records in ENS (Ethereum Name Service) - the dm3 profile. This
provides a general registry that can be accessed across applications and protocols. Thus, services using this standard
do not have to rely on the technology and availability of one provider, nor does it result in the emergence of various
incompatible silos in web3 as in web2.

1.4 Protocol Extensions

While the specification of the Message Transport Protocol (DM3MTP) focuses on a standardized format description
for general messages and how to deliver those messages to a delivery service defined in the receiver’s dm3 profile,
several optional protocol extensions are defined to cover further topics.

The dm3 delivery service and dm3 compatible app implementations MAY also use the following dm3 protocol exten-
sions:

• Message Access Specification: Specifies how received messages on a delivery service can be accessed.

• Message Storage Specification: Specifies how messages are persisted after they are delivered.

• Public Message Feed Specification: Specifies how a public message feed is created and accessed.

• Intra Delivery Service Messaging Specification: Specifies additional features for messaging if sender and
receiver are using the same delivery service.

• Group Messaging Specification: Specifies a protocol extension to enable group messaging.

• Encryption and Signing Key Derivation Specification: Specifies how to derive keys from the wallet key.

• Privacy Onion Routing Specification: Specifies a protocol extension to enable privacy-preserving onion rout-
ing.

• Spam Protection Specification: Specifies additional methods, based on web3 technology, that prevent spam on
the receiver’s side.

• Layer-2 Registry Specification: Specifies how to include a layer-2 or cross-chain registry into subdomains to
extend the general registry

• Top-Level Alias Specification: Specifies how subdomains can be mapped to non-ENS-top-level domains. This
is needed for instance for cross-chain interoperability.

The specifications for the protocol extensions are still in draft status and will be published soon.

4 Chapter 1. Overview

CHAPTER

TWO

MESSAGE TRANSPORT PROTOCOL (DM3MTP)

2.1 Registry

A central (but decentralized) registry is needed where a dm3 compatible app, service, or protocol can lookup dm3
profiles of other users, containing

• Public keys,

• Links to delivery services.

The dm3 protocol uses ENS (Ethereum Name Service) as a central (but decentralized) registry. The following text
records are used for this purpose:

• network.dm3.profile: User profile entry

• network.dm3.deliveryService: Delivery service profile entry

The text records MUST be a URI containing the profile JSON string defined below.

The URI can be

• A data scheme (data:. . .) or

• A URL pointing to a profile JSON object (HTTPS:. . . or IPFS:. . .). To validate the integrity of the resolved
profile JSON string, the URL MUST be a native IPFS URL or a URL containing a dm3Hash parameter containing
the SHA-256 hash of the JSON.

Example network.dm3.profile text record entries:

• data:application/json,{profile...

• https://delivery.dm3.network/profile/0xbcd6de065fd7...b3cc?dm3Hash=ab84f8..
.b50c8

• ipfs://bafybeiemxf5abjwjz3e...vfyavhwq/

The profiles can only be changed by creating a new profile JSON and changing the corresponding text record via an
Ethereum transaction (if published on layer-1). Storing this information on layer-2 or linked via CCIP (Cross-Chain
Interoperability Protocol) using subdomains, is possible, too. The specification thereof will be published in the protocol
extension Layer-2 Registry Specification. This is currently under development and will be published soon.

Information read from ENS may be cached for performance reasons but the ENS TTL settings must be respected (to
be fetched from the resolver).

5

https://chain.link/cross-chain
https://chain.link/cross-chain

dm3 documentation, Release 1.0.0RC

2.1.1 User Profile

The user profile MUST contain:

• Public Signing Key: Key used to verify a message signature (ECDSA). The public signing key is the public key
of a secp256k1 private/public key pair. How to generate or derive this key pair depends on the implementation
of the client. The Encryption and Signing Key Derivation Specification proposes a method to derive those
keys based on a signature of the wallet keys. The key is presented as base64-encoded string of the key’s bytes
(see key encoding).

• Public Encryption Key: Public key used to create the key (together with the private key of the sender) to
encrypt a message. As default, the algorithm x25519-chacha20-poly1305 is used (see [NIR1]). If needed
(e.g., for compatibility reasons with an integrated protocol), a different encryption can be specified in the Profile
Extension. Nevertheless, using the default encryption is highly recommended. The key is presented as base64-
encoded string of the key’s bytes (see key encoding).

• Delivery Service List: List with at least one delivery service’ ENS name1.

DEFINITION: UserProfile

{
// Key used to encrypt messages
publicEncryptionKey: string,
// Key used to sign messages
publicSigningKey: string,
// ENS name list of the delivery services e.g., delivery.dm3.eth
deliveryServices: string[],

}

Example UserProfile with fallback delivery service:

{
"publicEncryptionKey":"nyDsUmYV4EDNCsG+pK...D=",
"publicSigningKey":"MBpqhsSkxevwbYEGnXX9r...c=",
"deliveryService": ["example_deliveryservice.eth","example_fallback-

→˓deliveryservice.eth"]
}

Additional to the user profile, the user profile extension can be queried from the user’s delivery service (see user profile
extension). As this information may change and depend as well on the delivery service, it MUST be requested directly
from the delivery service the message will be sent to.

Key encoding

Public keys published in the profiles are presented as base64-encoded strings of the key’s bytes.

Example Key encoding

Key = [134, 57, 101, ..., 167]
KeyString = "jjllMO...qc="

1 For information, on how to adapt dm3 for ecosystems not based on Ethereum, see appendix Cross Chain Applications.

6 Chapter 2. Message Transport Protocol (DM3MTP)

dm3 documentation, Release 1.0.0RC

2.1.2 Delivery Service Profile

The delivery service profile MUST contain:

• Public Signing Key: Key used to verify a postmark signature (see UserProfile). The key is presented as base64-
encoded string of the key’s bytes (see key encoding).

• Public Encryption Key: Public key used to create the key (together with the private key of the sender) to
encrypt a message. As default, the algorithm x25519-chacha20-poly1305 is used. The key is presented as
base64-encoded string of the key’s bytes (see key encoding).

• Delivery Service URL: URL pointing to the delivery service instance.

As the encryption algorithm for the delivery service, the default algorithm x25519-chacha20-poly1305 is mandatory.

DEFINITION: DeliveryServiceProfile

{
// Key used to sign postmarks
publicSigningKey: string,
// Key used to encrypt delivery information
publicEncryptionKey: string,
// URL pointing to the delivery service instance
url: string

}

Example: DeliveryServiceProfile

{
"publicEncryptionKey":"nyDsUmYV4EDNCsG+pK...D=",
"publicSigningKey":"MBpqhsSkxevwbYEGnXX9r...c=",
"url": "https://example_deliveryservice"

}

2.2 Message Transport

Sending (and receiving) a message takes place in 3 steps, although only the first two steps are part of the dm3 Message
Transfer Protocol.

1. The sender app prepares and sends the message to the receiver’s delivery service. If the primary delivery
service (first on the list) is not available, the next one from the list is contacted (and so on).

2. The delivery service buffers and processes the message (checks envelope, creates postmark to protocol time
of delivery, optionally sends a notification to the receiver, . . .).

3. The message is picked up by the recipient. As soon as the recipient reports the successful processing of the
message to the delivery service, the latter deletes the buffered message. !!! This is not part of the “Message
Transfer Protocol”, as this depends on the implementation and objective of the delivery service. If the delivery
service is following the dm3 Access Specification to serve dm3 compatible clients, it offers a REST API to retrieve
the messages, but a delivery service may also act as an interface/gateway to another protocol or application
ecosystem, handling incoming messages according to its rules. !!!

2.2. Message Transport 7

dm3 documentation, Release 1.0.0RC

2.2.1 Workflow

Step 1: Preparation of the Message and Envelope

Get dm3 profile

1. Read the network.dm3.profile text record of the receiver’s ENS name. If the profile record is not set, the
message cannot be delivered. It has to stay with the sender until the potential receiver publishes his/her profile.

2. The content is specified as URI (Uniform Resource Identifier). The following types must be supported:

1. DATA: The content is delivered as JSON. The data scheme MUST be application/json. Optionally,
the JSON content is base64 encoded. This must be specified as scheme extension application/json;
base64. If not base64 encoded, the content might be URL-encoded.

Example: data:application/json,%7B%22profileRegistryEntry%22%3A...
data:application/json;base64,eyJwdWJsaWNFbmNyeX...

2. HTTPS: The content is retrieved as a JSON object from a server and the dm3Hash URL parameter is used
to check the integrity of the profile string.

Example: https://exampleserver/example?dm3Hash=0x12ab4...

3. IPFS: The content is retrieved as a JSON object using IPFS network.

Example: ipfs://QmU6n6n1Q...

3. Interprete JSON object as dm3 profile.

4. Select the receiver’s delivery service ENS name by reading the deliveryServices user profile entry at index
0.

1. Get the network.dm3.deliveryService text record of the delivery service’s ENS name. The content is
delivered as URI (data, HTTPS, or IPFS), as described above in point 2.

2. Interprete JSON object as dm3 delivery service profile.

5. If the selected delivery service is unavailable, the sender MUST use the delivery service with the next higher
index in the deliveryServices list as a fallback.

Create a Message and Envelope

1. Get ProfileExtension from delivery service

• Read optional encryption parameters (like preferred encryption algorithm deviating from standard)

• Read supported message types. Only supported messages must be sent.

2. Sign the message using the private sender signing key, using ECDSA.

3. Encrypt the message using the public encryption key of the receiver (part of the user profile). The default en-
cryption algorithm is x25519-chacha20-poly1305. If a different algorithm is required (defined in the Profile-
Extension), this should be used for encryption. If it is not supported by the sender, the default encryption is
used.

4. Encrypt the delivery information using the public encryption key of the delivery service (part of the delivery
service profile). The mandatory encryption algorithm is x25519-chacha20-poly1305.

sequenceDiagram
participant AA as Alice' Client
participant E as Registry (ENS)
participant P as Profile Storage (e.g. IPFS)
AA->>E: get network.dm3.profile for Bob's ENS name

(continues on next page)

8 Chapter 2. Message Transport Protocol (DM3MTP)

dm3 documentation, Release 1.0.0RC

(continued from previous page)

E-->>AA: network.dm3.profile text record
opt network.dm3.profile text record is an URL
AA->>P: query Bob's profile
P-->>AA: profileRegistryEntry
AA->>AA: check profileRegistryEntry integrity

end
AA->>AA: sign message
AA->>AA: encrypt message

AA->>E: get network.dm3.deliveryService of Bob's delivery service
E-->>AA: network.dm3.deliveryService text record
opt network.dm3.deliveryService text record is an URL
AA->>P: query delivery service profile
P-->>AA: deliveryServiceRegistryEntry
AA->>AA: check deliveryServiceRegistryEntry integrity

end

AA->>AA: sign envelope
AA->>AA: encrypt deliveryInformation

Submit Message

1. Get ProfileExtension from delivery service

• Read spam protection settings (see Profile Extension).

• Check, if conditions are met. If not, the message must not be sent (as it will be discarded from the receiving
delivery service anyway). The sender should be informed.

2. Submit the message to the delivery service using the URL defined in the delivery service profile.

Step 2: Message processing at the delivery service

1. Decrypt delivery information.

2. Apply filter rules from the receiver’s profile extension. Discard the message if conditions are not met.

3. Create a postmark. The postmark protocols the reception and buffering of the message.

4. Buffer message. The delivery service is responsible to store the encrypted message until the receiver picks it up.
A delivery service may decide to have a max holding time. It must be at least 1 month. If the receiver didn’t fetch
the message within this time, the message may be deleted. This time can be queried from the delivery service’
properties

5. Optional: send notification(s) to the receiver that a message is waiting for delivery.

sequenceDiagram
actor A as Alice
participant AA as Alice' Client
participant BD as Bobs's Delivery Service
participant CC as Alice' Data Storage Service
participant BB as Bob's Client
A-->>AA: writes message
AA->>BD: dm3_getProfileExtension
BD-->>AA: retrieve Bob's "profileExtension"

(continues on next page)

2.2. Message Transport 9

dm3 documentation, Release 1.0.0RC

(continued from previous page)

AA->>AA: prepare message
opt
AA->>AA: prepare attachments
opt
AA-->>CC: store attachment data at service or IPFS

end
end
AA->>BD: dm3_getDeliveryServiceProperties
BD-->>AA: retrieve the delivery service' properties
AA->>AA: prepare envelope
AA->>BD: dm3_submitMessage
BD->>BD: decrypt deliveryInformation
BD->>BD: apply filter rules
BD->>BD: add postmark
BD->>BD: buffer message
opt

BD->>BB: notification
end

2.2.2 Message Data Structure

The message data structure stores all data belonging to the message that can only be read by the receiver. The entire
data structure is encrypted (based on the public key of the receiver).

The message data structure contains the following information:

• Message: (OPTIONAL) This string contains the actual message. For service messages (like READ_RECEIPT,
RESEND_REQUEST, or DELETE_REQUEST), this field may be empty or undefined. The message MUST
be plain text (UTF-8), optionally flavored with Markdown highlightings. If other encodings of the message
are provided, those MUST be attached as attachment (embedded with data scheme only), still providing the text
representation in the message string. Clients able to interpret the encoded attachment may display this instead
of the original message string. Others will visualize the message text as plain text or Markdown formatting.

• Metadata: This object contains all meta information about the message. Some attributes are mandatory, others
are optional. Also, application-specific attributes can be added. The MessageMetadata-Structure is described in
detail below.

• Attachments: (OPTIONAL) Media or other files or special encodings of the message may be an attachment to
a message, defined as an array of URIs (data, HTTPS, IPFS). Attachments are described in detail below.

• Signature: This is the signature with the sender’s signature key on the SHA-256 hash of the message data
structure without the signature field.

DEFINITION: Message Data Structure

{
// message text
// optional (not needed for messages of type READ_RECEIPT, DELETE_REQUEST, and RESEND_

→˓REQUEST)
message?: string,
// metadata added to the message.
metadata: MessageMetadata,
// message attachments e.g. images as an array of URIs

(continues on next page)

10 Chapter 2. Message Transport Protocol (DM3MTP)

dm3 documentation, Release 1.0.0RC

(continued from previous page)

// (optional)
attachments?: string[],
//the signature of the sender
// sign(sha256(safe-stable-stringify(struct_without_sig)))
signature: string

}

2.2.3 Message Metadata Structure

The message metadata structure stores all meta information belonging to a message. While some attributes are
mandatory, others are optional. If needed, application-specific meta information may be added, too.

The message metadata structure contains the following information:

• To: The ENS name the message is sent to.

• From: The ENS name of the sender

• Timestamp: The timestamp (unixtime in milliseconds) when the message was created.

• Type: Different types of messages can be sent. A dm3 compatible messenger may not support all types in the
UI but must at least handle not interpreted types meaningful (example: the messenger doesn’t support editing
existing messages. It appends messages with the type EDIT as new messages at the bottom of the conversation).

– NEW: A new message.

– DELETE_REQUEST: (OPTIONAL) This is a service message. The sender wants the referenced message
deleted. The value referenceMessageHash points to the message to be deleted. If the receiver’s messenger
doesn’t support the deletion of messages, it may ignore the message.

– EDIT: (OPTIONAL) An already existing (old) message was edited (new version). The value referenceMes-
sageHash points to the message to be replaced with a new version. If edit is not supported by the receiver’s
messenger, the message must be added as new.

– REPLY: (OPTIONAL) This message is a direct reply to an existing message. The value referenceMes-
sageHash points to the referenced message. If threads/references are not supported, it must be added as a
new message.

– REACTION: (OPTIONAL) This is a short referenced message, containing an emoji as a message, and the
value referenceMessageHash points to the referenced message.

– READ_RECEIPT: (OPTIONAL) This is a service message. The receiver sends this message back to the
sender to signal that the message was received and displayed. Sending this message is optional and it may
be ignored.

– RESEND_REQUEST: (OPTIONAL) This is a service message. The value referenceMessageHash points
to the referenced message. If possible (=available), the referenced message should be sent again.

• Reference Message Hash: (OPTIONAL) The hash of a previous message that the new one references. Must be
set for message types (REPLY, DELETE_REQUEST, EDIT, REACTION, RESEND_REQUEST).

• Reply Delivery Instruction: (OPTIONAL) It is needed for compatibility reasons with other protocols/apps. The
stored information MUST be delivered with any reply (e.g., a conversation or topic id, . . .) as meta information
of the encryption envelope. It is neither evaluated nor altered from dm3.

DEFINITION: Message Metadata Structure

{
(continues on next page)

2.2. Message Transport 11

dm3 documentation, Release 1.0.0RC

(continued from previous page)

// receiver ens-name
to: string,
// sender ens-name
from: string,
// message creation timestamp
timestamp: number,
// specifies the message type
type: "NEW" | "DELETE_REQUEST" | "EDIT" | "REPLY" | "REACTION" | "READ_RECEIPT" |

→˓"RESEND_REQUEST"
// message hash of the reference message
// optional (not needed for messages of type NEW)
referenceMessageHash?: string,
// instructions used by the receiver of the message on how to send a reply
// optional (e.g., used for bridging messages to other protocols)
replyDeliveryInstruction?: string,
// any kind of additional metadata may be added.
// This might be information needed by protocol extensions or app-specific meta␣

→˓information.
...

}

2.2.4 Attachments

Attachments can be any type of additional data or media files. These are organized as an array of URIs. Embedded
content is encoded as data scheme, external data as URL or IPFS. A message can have no or an arbitrary number of
attachments. The overall size of the message (inclusive of all embedded attachments) MUST be less than 20MB. The
overall size of the message can be restricted additionally by the delivery service (see Delivery Service Properties.) If
bigger media files need to be attached, the actual data need to be stored outside the message (still encrypted with the
receiver’s public key) and the attachment contains only the reference (URI with HTTPS or IPFS scheme). Otherwise,
the attachment may be included with URI scheme data.

Different dm3 compatible applications may handle attachments differently (visualization, embedding, or even ignoring
them). Applications may optionally support other encodings than text/markdown for the message. These may be added
as attachment and visualized instead of the original message text. It is the application’s responsibility to do this properly.

Examples:

"attachments":["data:text/html;base64,dfEwwewGJsaWKklNyeX...",...],

"attachments":["...",...],

"attachments":["https://exampleservice/exampleresource",...],

"attachments":["ipfs://AmE6mn1n64Q...",...],

12 Chapter 2. Message Transport Protocol (DM3MTP)

dm3 documentation, Release 1.0.0RC

2.2.5 Encryption Envelope Data Structure

The encryption envelope is the data structure that is sent to the delivery service. It contains delivery metadata and the
encrypted message itself. The envelope is read and interpreted by the delivery service. However, the actual message
is encrypted based on the receiver’s key and signed with the sender’s key so that it cannot be read or altered by the
delivery service.

The encryption envelope contains the following data:

• Message: The encrypted message (Message Data Structure).

• Metadata: This object contains all meta information about the envelope. Some attributes are mandatory, others
are optional. Also, application-specific attributes can be added. The EnvelopeMetadata Structure is described in
detail below.

• Postmark: (OPTIONAL) A data struct with the information on the delivery status. Postmark is empty/undefined
when the sender is sending the envelope to the delivery service. It is added by the delivery service and is encrypted
based on the public key of the receiver.

DEFINITION: Encryption Envelope Structure

{
// the message
// encrypted based on the receiver's public encryption key
message: string,
// meta information for the envelope
metadata: EnvelopeMetadata,
// contains information added by the delivery service
// encrypted based on receiver's public encryption key
postmark?: string,

}

2.2.6 Envelope Metadata Structure

The envelope metadata structure stores all meta information belonging to an envelope. While some attributes are
mandatory, others are optional. If needed, application-specific meta information may be added, too.

The envelope metadata structure contains the following data:

• Version: The protocol version of dm3.

• Encryption Scheme: The used encryption and signing algorithms. The default is x25519-chacha20-poly1305.
If this field is not set (undefined), the default is being used.

• Delivery Information: A data struct with the delivery information needed by the delivery service (message
metadata).

DEFINITION: Envelope Metadata Structure

{
// dm3 protocol version (e.g., 1.0)
version: string,
// used encryption scheme of the message
//optional: if not set, the default x25519-chacha20-poly1305 is taken
encryptionScheme?: string,
// datastruct with delivery info

(continues on next page)

2.2. Message Transport 13

dm3 documentation, Release 1.0.0RC

(continued from previous page)

// Delivery information object, encrypted based on the delivery servics' encryption key
deliveryInformation: string,
// any kind of additional metadata may be added.
// This might be information needed by protocol extensions or app-specific meta␣

→˓information.
...
// the signature of the sender
// sign(sha256(safe-stable-stringify(struct_without_sig)))
signature: string,

}

2.2.7 Delivery Information

The delivery information contains all metadata needed by the delivery service to handle a message.

The data structure contains the following information:

• To: The ENS name the message is sent to.

• From: the ENS name of the sender

• Delivery Instruction: this is optional information. It is needed for compatibility reasons with other proto-
cols/apps. The stored information (e.g., a conversation or topic id, . . .) will be delivered with any reply from the
receiver. It is neither evaluated nor altered from dm3.

DEFINITION: Delivery Information

{
// receiver ens-name
to: string,
// sender ens-name
from: string,
// instructions used by the delivery service on how to deliver the message
// optional (used for bridging messages to other protocols)
deliveryInstruction?: string

}

2.2.8 Postmark Data Structure

The postmark data structure contains information added by the delivery service regarding the delivery status.

It contains the following information:

• Massage Hash: the Hash (SHA-256) of the entire message.

• Incoming Timestamp: The unixtime in milliseconds when the delivery service received the message.

• Delivery Information: This is a copy of the delivery information provided in the envelope. As this info in the
envelope is encrypted for the delivery service, it MUST be added from the delivery service to the postmark. The
receiver can use this information to check if the sender of the message referenced in the Message Metadata) is
the same as referenced in the envelope.

• Signature: the signature of the postmark from the delivery service. This is needed to validate the postmark
information.

14 Chapter 2. Message Transport Protocol (DM3MTP)

dm3 documentation, Release 1.0.0RC

DEFINITION: Postmark

{
// sha256(EncryptionEnvelope.message)
messageHash: string,
// timestamp of when the delivery service received the message
incomingTimestamp: number,
// a copy of the delivery information from the envelope the delivery service
deliveryInformation: DeliveryInformation,
// signature of the delivery service
// sign(sha256(safe-stable-stringify(postmark_without_sig)))
signature: string,

}

2.3 API Delivery-Service (Incoming Messages)

For more detailed information about delivery services, see the appendix. Relevant to DM3MTP (protocol) is the API
to deliver messages (encrypted envelopes) only.

The delivery service is a JSON-RPC service, following the JSON-RPC 2.0 specification (see also [RPC1]).

To accept incoming messages, the delivery service MUST support the following JSON-RPC methods:

2.3.1 Submit Message

The submit message method is called to deliver the complete message envelope containing the delivery information
and the encrypted message.

Methode

// call to submit a message
dm3_submitMessage

Request

The request delivers the encrypted envelope containing the message itself and the delivery information as Encryptio-
nEnvelope.

// see description of EncryptionEnvelope data structure
EncryptionEnvelope

2.3. API Delivery-Service (Incoming Messages) 15

dm3 documentation, Release 1.0.0RC

Response

The response is as defined in the JSON-RPC specification. In case of an error, an error message is returned.

Example

{
"jsonrpc": "2.0",
"error": {
"code": -32600,
"message": "Invalid Request"

},
"id": null
}

Error codes

For default JSON-RPC error codes see appendix.

Additinal, application specific error codes can be reported:

Error code Error text Description
-32000 Invalid input Missing or invalid parameters.
-32001 Resource not found Requested resource not found.
-32002 Resource unavailable Requested resource not available.
-32003 Unautorized The caller was not autorized to call this method.
-32004 Method not supported Method is not implemented.
-32005 Limit exceeded Request exceeds defined limit.
-32006 JSON-RPC version not supported Version of JSON-RPC protocol is not supported.

If the message is rejected from the delivery service, the following error codes will be returned:

Error code Error text Description
-32010 Spam The sender’s address didn’t fit to the requirered spam protection settings.
-32011 Too big The size of the message exeeds the approved maximum size.

2.3.2 Get Properties of the Delivery Service

A delivery service provides a set of properties that a sending client MUST evaluate and observe. These properties
can be informative or define what the sender of a message must follow in order for the delivery service to accept the
message at all.

(compatibility information: it replaces the formerly defined mutableProfileExtension provided in the network.dm3.
profile)

16 Chapter 2. Message Transport Protocol (DM3MTP)

dm3 documentation, Release 1.0.0RC

Methode

// call to get a list of properties.
dm3_getDeliveryServiceProperties

Response

• Message TTL: Defines, how long the delivery service guarantees to cache a message. After the guaranteed time,
the message MAY be removed, even if it was not picked up by the receiver. The minimum MUST be 30 days. If
the value is not set, or set to 0 or null, messages will be cached unlimited (default).

• Size Limit: Each delivery service can define a maximum size of incoming messages. As the content of the
message incl. attachments is encrypted for the receiver, the delivery service can’t restrict attachments or other
embedded data by its content. The only way is to restrict the total size of the message. A sender MUST check
this property before sending the message, otherwise, the message may be rejected.

{
// Number of days a delivery service must buffer a message
// The message may be deleted if: incoming_timestamp_in_ms + days_to_ms(messageTTL)

→˓< now_in_ms
messageTTL: number;

// The delivery service accepts only envelopes which fulfill the following␣
→˓condition: sizeInBytes(envelope) <= sizeLimit

sizeLimit: number;
}

In case of an error, an error object is returned as described in error codes.

2.3.3 Get the User’s Profile Extension

Profile extensions are mutable properties of a receiver (identified by his/her ENS Name, . . .) that are not stored in the
network.dm3.profile and can be changed without the need for a transaction. As these properties may vary between
different delivery services, each delivery service to which the user is connected must provide this information.

Methode

// call to submit a message
dm3_getProfileExtension

Request

The request passes the name of the receiver.

// the name of the receiver
the_name

2.3. API Delivery-Service (Incoming Messages) 17

dm3 documentation, Release 1.0.0RC

Response

The profileExtension contains configuration information of the receiver:

• Encryption Scheme: (OPTIONAL) The default encryption scheme is x25519-chacha20-poly1305. If another
encryption scheme needs to be used (e.g., because this is needed for an ecosystem that is integrated into dm3),
this can be requested. The default algorithm MUST be accepted, too. Otherwise, it might be impossible for a
sender to deliver a message when it doesn’t support the requested algorithm. This is a list of supported schemes,
sorted by importance. All listed algorithms MUST be supported by the receiver. The sender is free to choose
but should use receiver’s preferences if supported.

• Supported Message Types: The receiver MUST provide a list of all message types that the client he/she uses
is supporting (see message data structure). The message type NEW MUST be supported always and is set as
default in case no information is delivered. The sender MUST NOT send unsupported messages, as the receiver
will not accept those messages.

Other information (like spam protection settings) can be added to this struct (defined in protocol extensions).

{
// Request of a specific encryption scheme.
// (optional)
encryptionScheme?: string[],
// List of supported message types
supportedMessageTypes: string[],

}

Example Profile Exception:

{
"encryptionScheme": ["x25519-chacha20-poly1305"],
"supportedMesssageTypes": ["NEW","EDIT", "READ_RECEIPT","RESEND_REQUEST"],

}

In case of an error, an error object is returned as described in error codes.

2.4 Appendix

2.4.1 Delivery Service

A Delivery Service is an RPC endpoint where a client can deliver its message (see API).

The delivery service

1. checks whether the message satisfies the recipient’s spam policy (see ProfileExtension)

2. decrypts the envelope, adds a postmark, and stores the message encrypted for the recipient until the recipient
picks it up.

3. if supported, notifies the receiver that there is a new message.

Delivery service nodes can be operated as a service or self-sovereign by the user. The protocol explicitly allows (see
user profile) a user to point to multiple delivery services so that if one is not available, another can be used. However,
delivery service nodes can also act as gateways to other protocols, services, or applications.

18 Chapter 2. Message Transport Protocol (DM3MTP)

dm3 documentation, Release 1.0.0RC

Gateway to other service

If a delivery service works as a gateway to another protocol or service, it must implement the API to receive dm3
messages. However, how it then processes the messages and delivers them to the ecosystem to which it is acting as a
gateway is completely up to it and depends only on the service or protocol to which it is connecting.

A gateway can also provide multiple delivery service nodes as primary and fallback services.

2.4.2 Cross Chain Applications

Although the dm3 protocol is fundamentally designed to use ENS as a central registry, the protocol can also be imple-
mented on other chains. Name services similar to ENS can be used as a local registry in the ecosystem of this chain.
For the entire dm3 ecosystem, this local registry can be directly integrated via CCIP (Cross Chain Interoperability Pro-
tocol) (and vice versa) so that interoperability can be established. A complementary extension will further simplify the
handling of names of such local registries by automatic mapping of top-level domains (see top-level alias at protocol
extensions).

2.4.3 RPC Error Codes

Default error codes are specified in the JSON-RPC specification.

Error
code

Error text Description

-32600 Invalid Re-
quest

The JSON sent is not a valid Request object.

-32601 Method not
found

The method does not exist / is not available.

-32602 Invalid params Invalid method parameter(s).
-32603 Internal error Internal JSON-RPC error.
-32700 Parse error Invalid JSON was received by the server. An error occurred on the server while

parsing the JSON text.

2.4. Appendix 19

https://www.jsonrpc.org/specification

dm3 documentation, Release 1.0.0RC

20 Chapter 2. Message Transport Protocol (DM3MTP)

CHAPTER

THREE

MESSAGE STORAGE PROTOCOL (DM3MSP)

3.1 Storage

The dm3 protocol does not specify where the user has to store his messages. Depending on the use case and the
requirements of the user, the messages can be stored in different places and ways. The user should always be in full
control of his/her decision, where and how to manage conversation data.

The following approaches are possible, although not the only ones.

• Local File Storage: All conversations including attached media are stored in the local file system. All stored
information is encrypted. While local storage is the most privacy preseving (conversation data is only stored an
the user’s device and in full control of the user), synchronization between devices is resistricted or not possible.

• Web3 Decentralized Storage: The conversations are organized and pinned in IPFS. The information is stored
fully encrypted. Multiple devices of the user can access the decentrally managed data.

• Cloud Storage: The conversations are stored at a cloud service of the user (like Google drive). The information
is stored fully encrypted. The user decides whether and/or which cloud service provider to use. The availability
of the conversation data thus depends on the availability of the cloud service provider. Synchronization between
different devices is easy as long as the cloud drive is accessable.

• dm3 Service Storage: A special variant of cloud storage is the data service of a dm3 node (delivery service).
As an optional service, this can offer the storage of encrypted conversations. To access the conversation history,
the client must be connected to this delivery service. Synchronization between multiple delivery service nodes
is optional.

[IMAGE to visualize storage]

For performance reasons, a client can/should cache current conversations so that it does not have to fetch the data from
a possibly remote storage each time it is accessed. If additional data is needed (e.g. earlier parts of the communication
history), it can be retrieved sequentially.

3.2 Data Structure

The conversation data is stored as a data tree grouped by conversations in containers. The structure can be realized
as a single file (e.g., export record), as a file store with multiple files (e.g., on local file system, a cloud drive, or in a
decentralized storage), or as a database (e.g., as a service).

The data is structured in such a way that fast access with low overhead to specific data is possible, but retrieval of larger
data packages is also efficient enough.

21

dm3 documentation, Release 1.0.0RC

3.2.1 Architecture

The information containers are clustered in 3 types of data:

• Root: The root container contains a list of all conversation IDs. A conversation is specified as a collection of
messages between 2 users. For each communication partner a conversation is stored. There is exactly one root
container per user. The list of conversation IDs is encrypted (with the user’s storage encryption key).

• Conversations: A conversation container contains a list of chunks, where the actual messages are stored. Each
list entry, the chunk identifier, contains the chunk’s id and the timestamp of the first message of the chunk. The
list of chunks is encrypted (with the user’s storage encryption key).

• Chunks: Each chunk container stores a list of messages. Those messages are sorted by timestamp. Each chunk
can contain a different number of messages. The number is determined by the absolute size of the chunk. Chunks
are encrypted (with the user’s storage encryption key).

Root Container

The key of the root container is defined as SHA-256 hash of the signature of the user’s ENS-name (represented by
$own_ens_name).

key = sha256(signature($own_ens_name))

This might be the file name, database identifier, or the section name of a file.

The conversations list is the list of ENS-names of the conversation contacts which are the IDs of the conversations.
These are ENS domains or ENS subdomains with dm3 profile (see registry).

DEFINITION: Root Container

{
conversations: string[]

}

This list is encrypted with the user’s storage encryption key.

Example: (unencrypted)

{
"conversations":
[

"friend1.ens",
"0x123..abc.addr.dm3.eth"

]
}

22 Chapter 3. Message Storage Protocol (DM3MSP)

dm3 documentation, Release 1.0.0RC

Conversation Container

The key of a conversations container is defined as SHA-256 hash of the combination of the key of the root con-
tainer root.key and the communication partner’s ENS-name, which is listed in the root container’s conversations
list (represented by root.conversations[$index] at the $index of the list).

key = sha256(root.key + root.conversations[$index])

For the same conversation partner, only one conversation can exist. A conversation must have at least one chunk with
one message. Empty conversations are not stored.

A reference to a chunk is described by an identifier (incrementing, starting with 0) and the timestamp (unix time in
milliseconds) of the first message in that chunk.

Note: The timestamp can be used to find messages from a certain time period more easily without having to scan
through all chunks.

DEFINITION: Chunk Identifier

{
// the chunk identifier, starting with 0
id: number,
// timestamp of the first message in a chunk
timestamp: number

}

The chunks list is the list of chunk identifiers describing the existig chunks. As chunks and messages are sorted in
time, the last chunk in the list is the newest one and used to add a new message.

DEFINITION: Conversations Container

{
chunks: ChunkIdentifier[]

}

This list is encrypted with the user’s storage encryption key.

Example: (unencrypted)

{
"chunks":
[

{ "id": 0, "timestamp": 16759549450000 },
{ "id": 1, "timestamp": 16762446650000 }

]
}

3.2. Data Structure 23

dm3 documentation, Release 1.0.0RC

Chunk Container

The key of a chunks container is defined as SHA-256 hash of the combination of the key of the conversations container
$conversation.key and the stringified chunk identifier, which is listed in the conversation’s container’s chunks list
(represented by $conversation as the current conversations container and the chunk identifier $conversation.
chunks[$index] at the $index of the list).

key = sha256($conversation.name + stringify($conversation.chunks[$index]))

The messages list contains the envelopes (see Encryption Envelope Structure) including the message. However, the
fields encrypted during transmission are decrypted. The entire chunks container is subsequently encrypted with the
storage encryption key.

DEFINITION: Chunk Container

{
messages: Envelope[]

}

The size of the chunks is defined by the maximum size. The maximum size is defined by the client.

Recomentation:

• minimum: 500kB,

• maximum: 10MB.

A chunk must contain at least one message. Empty chunks are not created.

Note: The envelope with the message contains encrypted content during transmission (end-to-end encryption). The
decrypted information is used for storage so that the sender’s public key is not required again to decrypt the data for
future use.

Note: The maximum size of a chunk must be bigger or equal to the maximum size of a message defined by the delivery
service (see maxium message size).

The messages list is encrypted with the user’s storage encryption key.

Example: (unencrypted)

{
"messages":
[

{ "message": {...}, "metadata": {...}, ...},
{ "message": {...}, "metadata": {...}, ...}

]
}

24 Chapter 3. Message Storage Protocol (DM3MSP)

CHAPTER

FOUR

REFERENCES

[NIR1] Nir, Y.; Langler, A.: ChaCha20 and Poly1305 for IETF Protocols. Internet Research Task Force (IRTF),
Request for Comments: 7539, ISSN: 20070-1721, https://datatracker.ietf.org/doc/html/rfc7539.

[RPC1] JSON-RPC Working Group: JSON-RPC 2.0 Specification, Origin Date: 2010/03/26, updated 2013/01/04,
https://www.jsonrpc.org/specification.

25

https://datatracker.ietf.org/doc/html/rfc7539
https://www.jsonrpc.org/specification

dm3 documentation, Release 1.0.0RC

26 Chapter 4. References

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

27

	Overview
	Abstract
	Motivation
	Base Architecture
	Protocol Extensions

	Message Transport Protocol (DM3MTP)
	Registry
	User Profile
	Key encoding

	Delivery Service Profile

	Message Transport
	Workflow
	Step 1: Preparation of the Message and Envelope
	Step 2: Message processing at the delivery service

	Message Data Structure
	Message Metadata Structure
	Attachments
	Encryption Envelope Data Structure
	Envelope Metadata Structure
	Delivery Information
	Postmark Data Structure

	API Delivery-Service (Incoming Messages)
	Submit Message
	Methode
	Request
	Response
	Error codes

	Get Properties of the Delivery Service
	Methode
	Response

	Get the User’s Profile Extension
	Methode
	Request
	Response

	Appendix
	Delivery Service
	Gateway to other service

	Cross Chain Applications
	RPC Error Codes

	Message Storage Protocol (DM3MSP)
	Storage
	Data Structure
	Architecture
	Root Container
	Conversation Container
	Chunk Container

	References
	Indices and tables

